Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS.
نویسندگان
چکیده
Flagellar type III secretion systems (T3SS) contain an essential cytoplasmic-ring (C-ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non-flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF-T3SS C-ring component in Shigella flexneri is alternatively translated to produce both full-length (Spa33-FL) and a short variant (Spa33-C), with both required for secretion. They associate in a 1:2 complex (Spa33-FL/C2) that further oligomerises into elongated arrays in vitro. The structure of Spa33-C2 and identification of an unexpected intramolecular pseudodimer in Spa33-FL reveal a molecular model for their higher order assembly within NF-T3SS. Spa33-FL and Spa33-C are identified as functional counterparts of a FliM-FliN fusion and free FliN respectively. Furthermore, we show that Thermotoga maritima FliM and FliN form a 1:3 complex structurally equivalent to Spa33-FL/C2 , allowing us to propose a unified model for C-ring assembly by NF-T3SS and flagellar-T3SS.
منابع مشابه
Assembly states of FliM and FliG within the flagellar switch complex.
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from...
متن کاملStructure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor.
Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-A resolution structure of the FliM middle domain (FliM(M)) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and Ch...
متن کاملThe Common Structural Architecture of Shigella flexneri and Salmonella typhimurium Type Three Secretion Needles
The Type Three Secretion System (T3SS), or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an at...
متن کاملCrystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG.
The FliG protein is essential for assembly, rotation and clockwise/counter-clockwise (CW/CCW) switching of the bacterial flagellum. About 25 copies of FliG are present in a large rotor-mounted assembly termed the 'switch complex', which also contains the proteins FliM and FliN. Mutational studies have identified the segments of FliG most crucial for flagellar assembly, rotation and switching. T...
متن کاملCrystal structure of the flagellar rotor protein FliN from Thermotoga maritima.
FliN is a component of the bacterial flagellum that is present at levels of more than 100 copies and forms the bulk of the C ring, a drum-shaped structure at the inner end of the basal body. FliN interacts with FliG and FliM to form the rotor-mounted switch complex that controls clockwise-counterclockwise switching of the motor. In addition to its functions in motor rotation and switching, FliN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 99 4 شماره
صفحات -
تاریخ انتشار 2016